

# Improvement of Data Quality\*

Marco Ferretti, TerraData, Italy

\*Work carried out under the contract with AB 15(IT) Corpo Forestale dello Stato, Italy



a Life+ co-financed project for the "Further Development and Implementation of an EU-level Forest Monitoring System".



The project coordination centre is situated at the Institute for World Forestry, Hamburg, Germany.







- Importance of data quality
- QA/QC activity under Life+ FUTMON
- Data quality: before (during) and after the FUTMON project





- Importance of data quality
- QA/QC activity under Life+ FUTMON
- Data quality: before (during) and after the FUTMON project



## Society



(Stiglitz,, Sen and Fitoussi, 2007)



- "What we measure affects what we do; and if our measurements are flawed, decision may be distorted"
- "We are almost blind when the metrics on which action is based are illdesigned or when they are not well understood."





## Credibility





- Failure to provide convincing evidence of the overall quality of environmental information can have serious consequences in environmental decision making.
- Particularly when "economic and litigious forces intersect with broader societal goals in a regulatory crucible" (Crumbling, 2002).





## Costs





(after EC, 1997; Moffat et al., 2008; Mirtl et al., 2010)

Questions remain about the ability of monitoring systems to provide reliable... data and information about the condition of natural resources (McGlade, 2010)







- Importance of data quality
- QA/QC activity under Life+ FUTMON
- Data quality: before (during) and after the FUTMON project



## QA/QC activity





- Improvement of methods
  - Integration and harmonization of monitoring methods
  - Definition of Data Quality
     Requirements
- Controlling and testing the actual quality of monitoring data
  - Intercalibration exercises
  - Training and assistance





# Monitoring Methods Revision, integration, harmonization







Before FutMon

During

After FutMon





# Setting of Formal Data Quality Requirements -DQRs





#### In relation to:

- Acceptable measurement errors;
- Acceptable frequency of wrong measurements;

#### Necessary for:

Documentation and monitoring of data quality





# **Quality Control**















(CEAM and WSL, 2009, 2010)



## Quality Control in FUTMON





- 13 field-lab QC exercises undertaken
- 102 variables tested
- 265 field/crews and labs involved







- Importance of data quality
- QA/QC activity under Life+ FUTMON
- Data quality: before (during) and after the FUTMON project



## Monitoring design





#### Before FUTMON

 Scarce attention paid to statistical monitoring design

 No attention paid to formal defintion of objectives

#### FUTMON





# Data Quality Requirements Extended





#### Before FUTMON

- 55% of investigations
- 33% of variables

#### FUTMON

- 100% of investigations
- 66% of variables





## **Augmented Quality Control**





- Before FUTMON:
  - 5 investigationscovered
- FUTMON:
  - 10 investigations covered

|                     | Before<br>FUTMON | FUTMON |
|---------------------|------------------|--------|
| Tree condition      | Yes              | Yes    |
| Biotic/Abiotic      | No               | Yes    |
| Tree growth         | No               | Yes    |
| Ozone injury        | Yes              | Yes    |
| Ambient Air Quality | No               | Yes    |
| Ground vegetation   | No               | Yes    |
| Phenology           | No               | Yes    |
| Foliar chemistry    | Yes              | Yes    |
| Soil Chemistry      | Yes              | Yes    |
| Water chemistry     | Yes              | Yes    |



## Data quality documented









# ...still gaps remain









## Conclusions





- Unprecedent QA effort. An unprecedent, large amount of QA/QC activity has been carried out under FUTMON.
- Credibility and defensibility. It is now possible to document the quality of forest monitoring data for all the investigations. Improved data quality is obvious. This helps making results defensible.
- Further effort needed. Despite the progress, QA gaps remain. Field sampling, field observation and DQR settings need additional effort.



## Acknowledgements





- All the FUTMON C1 Actions leaders
- All the experts across Europe that participated in the intercalibration exercises and ring-tests.
- The CB team at vTI for support and assistance
- The Italian AB Corpo Forestale dello Stato for trust, support and assistance